Welcome ... to Arkomnesia

BUS



 1. Pengertian Bus
        Pengertian Bus adalah  bagian dari sistem komputer yang berfungsi untuk memindahkan data antar bagian – bagian dalam sistem komputer. Data dipindahkan dari piranti masukan ke CPU, CPU ke memori, atau dari memori ke piranti keluaran. Bus merupakan Jalur komunikasi yang dibagi pemakai suatu set kabel tunggal yang digunakan untuk menghubungkan berbagai subsistem. Sistem bus adalah sebuah bus yang menghubungkan komponen-komponen utama komputer (CPU, Memori, I/O). Sistem bus adalah penghubung bagi keseluruhan komponen komputer dalam menjalankan tugasnya.
        Bus beroperasi pada kecepatan dan lebar yang berbeda. PC awal mempunyai bus dengan kecepatan 4.77 MHz dan lebar 8 bit yang dikenal dengan bus ISA (Industry Standard Architecture). Kemudian bus diperbaiki menjadi lebar 16 bit dengan kecepatan 8 MHz. Pada tahun 1990 Intel memperkenalkan bus PCI (Pheriperal Component Interconnect), semula dengan lebar 32 bit, sekarang lebar bus 64 bit dan di-run pada kecepatan 133 MHz. Sebuah bus yang menghubungkan komponen-komponen utama komputer disebut sebagai Bus System. Biasanya sebuah Bus System terdiri dari 50 hingga 100 saluran yang terpisah.
– Bus System dapat dibedakan atas:
1. Data Bus ( Saluran Data )
2. Address Bus ( Saluran Alamat )
3. Control Bus ( Saluran Kendali )



2.  JENIS – JENIS SISTEM BUS
       Saluran bus dapat dipisahkan menjadi dua tipe umum, yaitu dedicated dan multiplexed. Suatu saluran bus dedicated secara permanen diberi sebuah fungsi atau subset fisik komponen-komponen komputer.
       Sebagai contoh dedikasi fungsi adalah penggunaan alamat dedicated terpisah dan saluran data yang merupakan suatu hal yang umum bagi bus. Namun, hal ini bukanlah hal yang penting. Misalnya, alamat dan informasi data dapat ditransmisikan melalui sejumlah saluran yang sama dengan menggunakan saluran address valid control. Pada awal pemindahan data, alamat ditempatkan pada bus dan address valid control diaktifkan. Pada saat ini, setiap modul memiliki periode waktu tertentu untuk menyalin alamat dan menentukan apakah alamat tersebut merupakan modul beralamat. Kemudian alamat dihapus dari bus dan koneksi bus yang sama digunakan untuk transfer data pembacaan atau penulisan berikutnya. Metode penggunaan saluran yang sama untuk berbagai keperluan ini dikenal sebagai time multiplexing.
       Keuntungan time multiplexing adalah memerlukan saluran yang lebih sedikit, yang menghemat ruang dan biaya. Kerugiannya adalah diperlukannya rangkaian yang lebih kompleks di dalam setiap modul. Terdapat juga penurunan kinerja yang cukup besar karena event-event tertentu yang menggunakan saluran secara bersama-sama tidak dapat berfungsi secara paralel. Dedikasi fisik berkaitan dengan penggunaan multiple bus, yang masing-masing bus itu terhubung dengan hanya sebuah subset modul. Contoh yang umum adalah penggunaan bus I/O untuk menginterkoneksi seluruh modul I/O, kemudian bus ini dihubungkan dengan bus utama melalui sejenis modul adapter I/O. Keuntungan yang utama dari dedikasi fisik adalah throughput yang tinggi karena hanya terjadi kemacetan lalu lintas data yang kecil. Kerugiannya adalah meningkatnya ukuran dan biaya sistem.



3.  STRUKTUR SISTEM BUS     
 Sebuah bus sistem terdiri dari 50 hingga 100 saluran yang terpisah. Masing-masing saluran ditandai dengan arti dan fungsi khusus. Walaupun terdapat sejumlah rancangan bus yang berlainan, fungsi saluran bus dapat diklasifikasikan menjadi tiga kelompok, yaitu saluran data, saluran alamat, dan saluran kontrol. Selain itu, terdapat pula saluran distribusi daya yang memberikan kebutuhan daya bagi modul yang terhubung. 
a)  Data Bus  ( Saluran Data )
      Saluran data memberikan lintasan bagi perpindahan data antara dua modul sistem. Saluran ini secara kolektif disebut bus data. Umumnya bus data terdiri dari 8, 16, 32 saluran. Jumlah saluran diaktifkan dengan lebar bus data. Karena pada suatu saat tertentu masing-masing saluran hanya dapat membawa 1 bit, maka jumlah saluran menentukan jumlah bit yang dapat dipindahkan pada suatu saat. Lebar bus data merupakan faktor penting dalam menentukan kinerja sistem secara keseluruhan. Contohnya bila bus data lebarnya 8 bit dan setiap instruksi panjangnya 16 bit, maka CPU harus dua kali mengakses modul memori dalam setiap siklus instruksinya.
       Lintasan bagi perpindahan data antar modul. Secara kolektif lintasan ini disebut bus data. Umumnya jumlah saluran terkait dengan panjang word, misalnya 8, 16, 32 saluran.
Tujuan : agar mentransfer word dalam sekali waktu.
Jumlah saluran dalam bus data dikatakan lebar bus, dengan satuan bit, misal lebar bus 16 bit
b)      Address Bus ( Saluran Alamat )
  • - Saluran alamat digunakan untuk menandakan sumber atau tujuan data pada bus data. Misalnya, bila CPU akan membaca sebuah word data dari memori, maka CPU akan menaruh alamat word yang dimaksud pada saluran alamat. Lebar bus alamat akan menentukan kapasitas memori maksimum sistem. Selain itu, umumnya saluran alamat juga dipakai untuk mengalamati port-port input/outoput. Biasanya, bit-bit berorde lebih tinggi dipakai untuk memilih lokasi memori atau port I/O pada modul. Digunakan untuk menspesifikasi sumber dan tujuan data pada bus data.
  • - Digunakan untuk mengirim alamat word pada memori yang akan diakses CPU.
  • - Digunakan untuk saluran alamat perangkat modul komputer saat CPU mengakses suatu modul.
  • - Semua peralatan yang terhubung dengan sistem komputer, agar dapat diakses harus memiliki alamat.
Contoh : mengakses port I/O, maka port I/O harus memiliki alamat hardware-nya.
c)  Control Bus ( Saluran Kontrol )
 Saluran kontrol digunakan untuk mengntrol akses ke saluran alamat dan penggunaan data. Karena data dan saluran alamat dipakai bersama oleh seluruh komponen, maka harus ada alat untuk mengontrol penggunaannya. Sinyal-sinyal kontrol melakukan transmisi baik perintah maupun informasi pewaktuan diantara modul-modul sistem. Sinyal-sinyal pewaktuan menunjukkan validitas data dan informasi alamat. Sinyal-sinyal perintah menspesifikasikan operasi-operasi yang akan dibentuk. Umumnya saluran kontrol meliputi : memory write, memory read, I/O write, I/O read, transfer ACK, bus request, bus grant, interrupt request, interrupt ACK, clock, reset.
Berikut ini adalah fungsi-fungsi yang terdapat pada control bus ( saluran control ):
  • - Digunakan untuk menspesifikasi sumber dan tujuan data pada bus data.
  • - Digunakan untuk mengirim alamat word pada memori yang akan diakses CPU.
  • - Digunakan untuk saluran alamat perangkat modul komputer saat CPU mengakses suatu modul.
  • - Semua peralatan yang terhubung dengan sistem komputer, agar dapat diakses harus memiliki alamat.
Contoh : mengakses port I/O, maka port I/O harus memiliki alamat hardware-nya

Gambar 1.1 Sistem Bus 
Di sistem komputer berbasis mikroprosesor, terdapat 3 jalur yang menjadi tempat mengalirnya proses.
  1. Bus Data yang berfungsi mengalirkan data dari/ke mikroprosesor
  2. Bus Alamat/Address  yang berfungsi mengalamati suatu proses dari/ke memori atau I/O
  3. Bus Kontrol yang berfungsi mengatur proses instruksi yang terjadi dari/ke mikroprosesor.
Diilustrasikan pada gambar berikut : 
 
 Gambar 1.2 Hubungan Bus Data, Bus Address dan Bus Kontrol
        Bus Alamat meminta alamat memori dari sebuah memori atau alamat I/O dari suatu peranti I/O. Jika I/O dialamati, maka bus alamat akan memiliki 16 bit alamat dari 0000H sampai FFFFH. Alamat ini disebut juga port number. Port number akan memilih 1 dari 64K (65535) peranti I/O yang berbeda. Jika alamat memori dialamati, maka Bus Alamat akan berisi alamat memori tersebut. Lebar alamat memori tergantung dari tipe mikroprosesor yang dipakai (sekali lagi dalam satuan bit).
        Bus Data berfungsi mengalirkan data dari/ke mikroprosesor ke/dari alamat memori tujuan atau alamat I/O tujuan. Besar kecepatan transfer bus data bervariasi sesuai dengan mikroprosesor yang dipakai.
         Bus Kontrol berisikan instruksi yang mengatur operasi apakah itu read atau write. Ada 4 tipe kontrol yaitu :
  • - MRDC (Memory Read Control) yang menyatakan transfer data dari memori ke mikroprosesor
  • - MWTC (Memory Write Control) yang menyatakan transfer data dari mikroprosesor ke memori
  • - IORC (I/O Read Control) yang menyatakan transfer data dari peranti I/O ke mikroprosesor
  • - IOWC (I/O Write Control) yang menyatakan transfer data dari mikroprosesor ke peranti I/O.
Hubungan ketiganya adalah, misalnya jika kita ingin mentransfer data dari mikroprosesor ke memori. Pertama, bus alamat akan mengalamati address tujuan. Lalu bus kontrol akan memberi sinyal MWTC = 0. Barulah bus data akan mentransfer data ke alamat tujuan.
–   Sistem BUS
  1. Penghubung bagi keseluruhan komponen komputer dalam menjalankan tugasnya
  2. Komponen komputer :
  3. CPU
    1. Memori
    2. Perangkat I/O
–  Transfer data antar komponen komputer.
  1. Data atau program yang tersimpan dalam memori dapat diakses dan dieksekusi CPU melalui perantara bus
  2.  Melihat hasil eksekusi melalui monitor juga menggunakan sistem bus
  3. Kecepatan komponen penyusun komputer harus diimbangi kecepatan dan manajemen busyang baik
–  Mikroprosesor
  1. Melakukan pekerjaan secara paralel
  2. Program dijalankan secara multitasking
  3. Sistem bus tidak hanya lebar tapi juga cepat



 1. Jenis Data
  a. Memori :
      Memori umumnya terdiri atas N word memori dengan panjang yang sama. Masing–masing word diberi alamat numerik yang unik (0, 1, 2, …N-1). Word dapat dibaca maupun ditulis pada memori dengan kontrol Read dan Write. Lokasi bagi operasi dispesifikasikan oleh sebuah alamat.
  b. Modul I/O :
      Operasi modul I/O adalah pertukaran data dari dan ke dalam komputer. Berdasakan pandangan internal, modul I/O dipandang sebagai sebuah memori dengan operasi pembacaan dan penulisan. Seperti telah dijelaskan pada bab 6 bahwa modul I/O dapat mengontrol lebih dari sebuah perangkat peripheral. Modul I/O juga dapat mengirimkan sinyal interrupt.
  c. CPU :
      CPU berfungsi sebagai pusat pengolahan dan eksekusi data berdasarkan routine–routine program yang diberikan padanya. CPU mengendalikan seluruh sistem komputer sehingga sebagai konsekuensinya memiliki koneksi ke seluruh modul yang menjadi bagian sistem komputer. 
Gambar 1.3 Modul Komputer
Dari jenis pertukaran data yang diperlukan modul–modul komputer, maka struktur interkoneksi harus mendukung perpindahan data.
  • Memori ke CPU : CPU melakukan pembacaan data maupun instruksi dari memori.
  • CPU ke Memori : CPU melakukan penyimpanan atau penulisan data ke memori.
  • I/O ke CPU : CPU membaca data dari peripheral melalui modul I/O.
  • CPU ke I/O : CPU mengirimkan data ke perangkat peripheral melalui modul I/O.
  • I/O ke Memori atau dari Memori : digunakan pada sistem DMA


Sampai saat ini terjadi perkembangan struktur interkoneksi, namun yang banyak digunakan saat ini adalah sistem bus.
–  Prinsip Operasi Bus
  1. Meminta penggunaan bus.
  2. Apabila telah disetujui, modul akan memindahkan data yang diinginkan ke modul yang dituju
–  Hierarki Multiple Bus
Bila terlalu banyak modul atau perangkat dihubungkan pada bus maka akan terjadi penurunan kinerja
Faktor – faktor :
  1. Semakin besar delay propagasi untuk mengkoordinasikan penggunaan bus.
  2. Antrian penggunaan bus semakin panjang.
  3. Dimungkinkan habisnya kapasitas transfer bus sehingga memperlambat data. 



Gambar 1.4 Arsitektur bus jamak tradisional

–  Arsitektur bus jamak
    Prosesor, cache memori dan memori utama terletak pada bus tersendiri pada level tertinggi karena modul – modul tersebut memiliki karakteristik pertukaran data yang tinggi.
Pada arsitektur berkinerja tinggi, modul – modul I/O diklasifikasikan menjadi dua,
  • Memerlukan transfer data berkecepatan tinggi
  • Memerlukan transfer data berkecepatan rendah.
Modul dengan transfer data berkecepatan tinggi disambungkan dengan bus berkecepatan tinggi pula,
Modul yang tidak memerlukan transfer data cepat disambungkan pada bus ekspansi 
Gambar 1.5 Arsitektur bus jamak kinerja tinggi



4. Elemen-Elemen Rancangan Bus
 Rancangan suatu bus dapat dibedakan atau diklasifikasikan oleh elemen-elemen sebagai berikut :
1. Jenis Bus
Jenis bus dapat dibedakan atas :
  • Dedicated
Merupakan metode di mana setiap bus ( saluran ) secara permanen diberi fungsi atau subset fisik komponen komputer.
  • Time Multiplexed
Merupakan metode penggunaan bus yang sama untuk berbagai  keperluan, sehingga menghemat ruang dan biaya.



2. Metode Arbitrasi
Metode arbitrasi adalah metode pengaturan dari penggunaan bus, dan dapat dibedakan atas :
  • Tersentralisasi : menggunakan arbiter sebagai pengatur sentral
  • Terdistribusi    : setiap bus memiliki access control logic
  3. Timing
         Timing berkaitan dengan cara terjadinya event yang diatur pada bus system, dan dapat dibedakan atas :
  • Synchronous
Terjadinya event pada bus ditentukan oleh clock (pewaktu )
  • Asynchronous
Terjadinya sebuah event pada bus mengikuti dan tergantung pada event sebelumnya


 4.  Lebar Bus
  Semakin lebar bus data, semakin besar bit yang dapat ditransfer pada suatu saat.


  5. Jenis Transfer Data
        Transfer data yang menggunakan bus di antaranya adalah :
     1. Operasi Read
     2. Operasi Write
     3. Operasi Read Modify Write
     4. Operasi Read After Write
     5. Operasi Block

A.  PCI
            PCI adalah singkatan dari Peripheral Component Interconnect dan merupakan bus yang tidak tergantung pada prosesor, berbandwith tinggi serta dapat berfungsi sebagai mezzanine atau bus peripheral. PCI memberikan sistem yang lebih baik bagi subsistem I/O berkecepatan tinggi , seperti : graphic display adapter, network interface controller, dan disc controller.
PCI dirancang untuk mendukung bermacam-macam konfigurasi berbasiskan mikroprosesor, baik sistem mikroprosesor tunggal ataupun sistem mikroprosesor jamak.



B.  Future Bus +
1. Future Bus + adalah standar bus asinkron berkinerja tinggi yang dibuat oleh IEEE dan didasarkan atas.
2. Tidak tergantung pada arsitektur, prosesor dan teknologi tertentu.
3.    Memiliki protokol transfer asinkron dasar.
4.  Menyediakan dukungan bagi sistem-sistem yang fault tolerant dan memiliki reliabilitas yang tinggi.
5. Menawarkan dukungan langsung terhadap memori berbasis cache yang dapat digunakan bersama.
6. Memberikan definisi transportasi pesan yang kompetibel
–  Proses aliran data pada siklus pengambilannya! 
  • Pada saat siklus pengambilan (fetch cycle), instruksi dibaca dari memori.
  • PC berisi alamat instruksi berikutnya yang akan diambil.
  • Alamat ini akan dipindahkan ke MAR dan ditaruh di bus alamat.
  • Unit kontrol meminta pembacaan memori dan hasilnya disimpan di bus data dan disalin ke MBR dan kemudian dipindahkan ke IR.
  • PC naik nilainya 1, sebagai persiapan untuk pengambilan selanjutnya.
  • Siklus selesai, unit kontrol memeriksa isi IR untuk menentukan apakah IR berisi operand specifier yang menggunakan pengalamatan tak langsung.
–  Proses aliran data pada siklus tak langsung! 
  • N bit paling kanan pada MBR, yang berisi referensi alamat, dipindahkan ke MAR.
  • Unit kontrol meminta pembacaan memori, agar mendapatkan alamat operand yang diinginkan ke dalam MBR.
  • Siklus pengambilan dan siklus tak langsung cukup sederhana dan dapat diramalkan.
  • Siklus instruksi (instruction cycle) mengambil banyak bentuk karena bentuk bergantung pada bermacam-macam instruksi mesin yang terdapat di dalam IR.
  • Siklus meliputi pemindahan data di antara register-register, pembacaan atau penulisan dari memori atau I/O, dan atau penggunaan ALU.
–  Proses aliran data pada siklus interupsi! 
  • Isi PC saat itu harus disimpan sehingga CPU dapat melanjutkan aktivitas normal setelah terjadinya interrupt.
  • Cara : Isi PC dipindahkan ke MBR untuk kemudian dituliskan ke dalam memori.
  • Lokasi memori khusus yang dicadangkan untuk keperluan ini dimuatkan ke MAR dari unit kontrol.
  • Lokasi ini berupa stack pointer.
  • PC dimuatkan dengan alamat rutin interrupt.
  • Akibatnya, siklus instruksi berikutnya akan mulai mengambil instruksi yang sesuai.


5. KETERKAITAN DAN CONTOH SISTEM BUS        

Sebuah komputer memiliki beberapa bus agar dapat berjalan. Banyaknya bus yang terdapat dalam sistem, tergantung dari arsitektur sistem komputer yang digunakan. Sebagai contoh, sebuah komputer PC dengan prosesor umumnya Intel Pentium 4 memiliki bus prosesor (Front-Side Bus), bus AGP, bus PCI, bus USB, bus ISA (yang digunakan oleh keyboard dan mouse), dan bus-bus lainnya.
        Bus disusun secara hierarkis karena setiap bus yang memiliki kecepatan rendah akan dihubungkan dengan bus yang memiliki kecepatan tinggi. Setiap perangkat di dalam sistem juga dihubungkan ke salah satu bus yang ada. Sebagai contoh, kartu grafis AGP akan dihubungkan ke bus AGP. Beberapa perangkat lainnya (utamanya chipset atau kontrolir) akan bertindak sebagai jembatan antara bus-bus yang berbeda. Contoh sebuah kontrolir bus SCSI dapat mengubah sebuah bus menjadi bus SCSI, baik itu bus PCI atau bus PCI Express.

Arsitektur Komputer Von Neumann dan Harvard



Arsitektur Von Neumann adalah arsitektur komputer yang menempatkan program (ROM=Read Only Memory) dan data (RAM=Random Access Memory) dalam peta memori yang sama. Arsitektur ini memiliki address dan data bus tunggal untuk mengalamati program (instruksi) dan data. Contoh dari mikrokontroler yang memakai arsitektur Von Neumann adalah keluarga 68HC05 dan 68HC11 dari Motorola.
Sebaliknya, arsitektur Harvard memiliki dua memori yang terpisah satu untuk program (ROM) dan satu untuk data (RAM). Intel 80C51, keluarga Microchip PIC16XX, Philips P87CLXX dan Atmel AT89LSXX adalah contoh dari mikroprosesor yang mengadopsi arsitektur Harvard. Kedua jenis arsitektur ini masing-masing memiliki keungulan tetapi juga ada kelemahannya.
Dengan arsitektur Von Neuman prosesor tidak perlu membedakan program dan data. Prosesor tipe ini tidak memerlukan control bus tambahan berupa pin I/O khusus untuk membedakan program dan data. Karena kemudahan ini, tidak terlalu sulit bagi prosesor yang berarsitektur Von Neumann untuk menambahan peripheral eksternal seperti A/D converter, LCD, EEPROM dan devais I/O lainnya. Biasanya devais eksternal ini sudah ada di dalam satu chips, sehingga prosesor seperti ini sering disebut dengan nama mikrokontroler (microcontroller).


1. Arsitektur Komputer Von Noumann

LDAA $4000 ; A <– $4000
Pada dasarnya komputer arsitektur Von Neumann adalah terdiri dari elemen sebagai berikut:
Prosesor, merupakan pusat dari kontrol dan pemrosesan instruksi pada komputer.ü
Memori, digunakan untuk menyimpan informasi baik program maupun data.ü
ü Perangkat input-output, berfungsi sebagai m
edia yang menangkap respon dari luar serta menyajikan informasi keluar sistem komputer.

Model kerja dari arsitektur dasar Von Neumann dapat dilihat pada Gambar 1. Pada gambar tersebut prosesor terdiri atas Unit Kontrol (CU) dan Unit Logika dan Aritmatik (ALU). Memori berfungsi sebagai tempat menyimpan instruksi yang sedang dijalankan oleh prosesor, lalu hasilnya dapat disajikan melalui perangkat input/output.
Prosesor atau Central Processing Unit (CPU)
CPU merupakan tempat untuk melakukan pemrosesan instruksi-instruksi dan pengendalian sistem komputer.
Perkembangan perangkat CPU mengikuti generasi dari sistem komputer.
Pada generasi pertama CPU terbuat dari rangkaian tabung vakum sehingga memiliki ukuran yang sangat besar. Pada generasi kedua telah diciptakan transistor sehinga ukuran CPU menjadi lebih kecil dari sebelumnya. Pada generasi ketiga CPU telah terbuat dari rangkaian IC sehingga ukurannya menjadi lebih kecil. Pada generasi keempat telah diciptakan teknologi VLSI dan ULSI sehingga memungkinkan ribuan sampai jutaan transistor tersimpan dalam satu chip.
o Control Unit (CU).
Control Unit atau Unit Kontrol berfungsi untuk mengatur dan mengendalikan semua peralatan yang ada pada sistem komputer. Unit kendali akan mengatur kapan alat input menerima data dan kapan data diolah serta kapan ditampilkan pada alat output.
Unit ini juga mengartikan instruksi-instruksi dari program komputer, membawa data dari alat input ke memori utama, dan mengambil data dari memori utama untuk diolah.
Bila ada instruksi untuk perhitungan aritmatika atau perbandingan logika, maka unit kendali akan mengirim instruksi tersebut ke ALU. Hasil dari pengolahan data dibawa oleh unit kendali ke memori utama lagi untuk disimpan, dan pada saatnya akan disajikan ke alat output.
o Arithmatic and Logic Unit (ALU).
Arithmatic and Logic Unit atau Unit Aritmetika dan Logika berfungsi untuk melakukan semua perhitungan aritmatika (matematika) dan logika yang terjadi sesuai dengan instruksi program. ALU menjalankan operasi penambahan, pengurangan, dan operasi-operasi sederhana lainnya pada input-inputnya dan memberikan hasilnya pada register output.
o Register
Register merupakan alat penyimpanan kecil yang mempunyai kecepatan akses cukup tinggi, yang digunakan untuk menyimpan data dan instruksi yang sedang diproses, sementara data dan instruksi lainnya yang menunggu giliran untuk diproses masih disimpan di dalam memori utama. Setiap register dapat menyimpan satu bilangan hingga mencapai jumlah maksimum tertentu tergantung pada ukurannya. Register-register dapat dibaca dan ditulis dengan kecepatan tinggi karena berada pada CPU.
Beberapa jenis register adalah:
Program Counter (PC), merupakan register yang menunjuk ke instruksi berikutnya yang harus diambil dan dijalankan.ü
Instruction Register (IR), merupakan register yang menyimpan instruksi yang sedang dijalankan. General Purpose Register, merupakan register yang memiliki kegunaaan umum yang berhubungan dengan data yang diproses.ü
ü Memory Data Register (MDR), merupakan register yang digunakan untuk menampung data atau instruksi hasil pengiriman dari memori utama ke CPU atau menampung data yang akan direkam ke memori utama dari hasil pengolahan oleh CPU.
Memory address register (MAR), merupakanü register yang digunakan untuk menampung alamat data atau instruksi pada memori utama yang akan diambil atau yang akan diletakkan.
Sebagianü besar komputer memiliki beberapa register lain, sebagian digunakan untuk tujuan umum, dan sebagian lainnya untuk tujuan khusus.
o Bus
Bus merupakan penghubung antara semua komponen CPU. Bus berupa sekumpulan kabel-kabel paralel untuk mentransmisikan alamat (address), data, dan sinyal-sinyal kontrol.
Kelebihan dan Kelemahan
Keuntungan lain dengan arrrsitektur Von Neumann adalah pada fleksibilitas pengalamatan program dan data. Biasanya program selalu ada di ROM dan data selalu ada di RAM. Arsitektur Von Neumann memungkinkan prosesor untuk menjalankan program yang ada didalam memori data (RAM). Misalnya pada saat power on, dibuat program inisialisasi yang mengisi byte di dalam RAM. Data di dalam RAM ini pada gilirannya nanti akan dijalankan sebagai program. Sebaliknya data juga dapat disimpan di dalam memori program (ROM). Contohnya adalah data look-up-table yang ditaruh di ROM. Data ini ditempatkan di ROM agar tidak hilang pada saat catu daya mati. Pada mikroprosesor Von Neumann, instruksi yang membaca data look-up-table atau program pengambilan data di ROM, adalah instruksi pengalamatan biasa. Sebagai contoh, pada mikrokontroler 8bit Motorola 68HC11 program itu ditulis dengan :
LDAA $4000 ; A <– $4000
Program ini adalah instruksi untuk mengisi accumulator A dengan data yang ada di alamat 4000 (ROM).
Instruksi tersebut singkat hanya perlu satu baris saja. Pada prinsipnya, kode biner yang ada di ROM atau di RAM bisa berupa program dan bisa juga berupa data.
Arsitektur Von Neumann bukan tidak punya kelemahan, diantaranya adalah bus tunggalnya itu sendiri. Sehingga instruksi untuk mengakses program dan data harus dijalankan secara sekuensial dan tidak bisa dilakukan overlaping untuk menjalankan dua isntruksi yang berurutan. Selain itu bandwidth program harus sama dengan banwitdh data. Jika memori data adalah 8 bits maka program juga harus 8 bits. Satu instruksi biasanya terdiri dari opcode (instruksinya sendiri) dan diikuti dengan operand (alamat atau data). Karena memori program terbatas hanya 8 bits, maka instruksi yang panjang harus dilakukan dengan 2 atau 3 bytes. Misalnya byte pertama adalah opcode dan byte berikutnya adalah operand. Secara umum prosesor Von Neumann membutuhkan jumlah clock CPI (Clock per Instruction) yang relatif lebih banyak dan walhasil eksekusi instruksi dapat menjadi relatif lebih lama.


2. Arsitektur Komputer Harvard



Pada mikroprosesor yang berarsitektur Harvard, overlaping pada saat menjalankan instruksi bisa terjadi. Satu instruksi biasanya dieksekusi dengan urutan fetch (membaca instruksi ), decode (pengalamatan), read (membaca data), execute (eksekusi) dan write (penulisan data) jika perlu. Secara garis besar ada dua hal yang dilakukan prosesor yaitu fetching atau membaca perintah yang ada di memori program (ROM) dan kemudian diikuti oleh executing berupa read/write dari/ke memori data (RAM). Karena pengalamatan ROM dan RAM yang terpisah, ini memungkinkan CPU untuk melakukan overlaping pada saat menjalankan instruksi. Dengan cara ini dua instruksi yang beurutan dapat dijalankan pada saat yang hampir bersamaan. Yaitu, pada saat CPU melakukan tahap executing instruksi yang pertama, CPU sudah dapat menjalankan fetching instruksi yang ke-dua dan seterusnya. Ini yang disebut dengan sistem pipeline, sehingga program keseluruhan dapat dijalankan relatif lebih cepat.Arsitektur Harvard
prinsip pipeline

Pada arsitektur Harvard, lebar bit memori program tidak mesti sama dengan lebar memori data. Misalnya pada keluarga PICXX dari Microchip, ada yang memiliki memori program dengan lebar 12,14 atau 16 bits, sedangkan lebar data-nya tetap 8 bits. Karena bandwith memori program yang besar (16 bits), opcode dan operand dapat dijadikan satu dalam satu word instruksi saja. Tujuannya adalah supaya instruksi dapat dilakukan dengan lebih singkat dan cepat.
Kedua hal di atas inilah yang membuat prosesor ber-arsitektur Harvard bisa memiliki CPI yang kecil. PICXX dari Microchip dikenal sebagai mikroprosesor yang memiliki 1 siklus mesin (machine cycle) untuk tiap instruksinya, kecuali instruksi percabangan.
Arsitektur Havard menggunakan memori terpisah untuk program dan data dengan alamat dan bus data yang berdiri sendiri. Karena dua perbedaan aliran data dan alamat, maka tidak diperlukan multiplexing alamat dan bus data. Arsitektur ini tidak hanya didukung dengan bus paralel untuk alamat dan data, tetapi juga menyediakan organisasi internal yang berbeda sedemikian rupa instruksi dapat diambil dan dikodekan ketika berbagai data sedang diambil dan dioperasikan. Lebih lanjut lagi, bus data bisa saja memiliki ukuran yang berbeda dari bus alamat. Hal ini memungkinkan pengoptimalan bus data dan bus alamat dalam pengeksekusian instruksi yang cepat. Sebagai contoh, mikrokontroler Intel keluarga MCS-51 menggunakan arsitektur Havard karena ada perbedaan kapasitas memori untuk program dan data, dan bus terpisah (internal) untuk alamat dan data. Begitu juga dengan keluarga PIC dari Microchip yang menggunakan arsitektur Havard.
Kelebihan dan Kekurangan
Dari segi kapasitas memori, tentu arsitektur Harvard memberi keuntungan. Karena memori program dan data yang terpisah, maka kavling total memori program dan data dapat menjadi lebih banyak. Mikrokontroler 8bit Motorola 68HC05 memiliki peta memori 64K yang dipakai bersama oleh RAM dan ROM. Oleh sebab itu pengalamatan ROM dan RAM hanya dapat mencapai 64K dan tidak lebih. Sedangkan pada mikrokontroler Intel keluarga 80C51 misalnya, memori program (ROM) dan memori data (RAM) masing-masing bisa mencapai 64K.
Tetapi ada juga kekurangannya, arsitektur Harvard tidak memungkinkan untuk menempatkan data pada
ROM. Kedengarannya aneh, tetapi arsitektur ini memang tidak memungkinkan untuk mengakses data yang ada di ROM. Namun hal ini bisa diatasi dengan cara membuat instruksi dan mekanisme khusus untuk pengalamatan data di ROM. Mikroprosesor yang memiliki instruksi seperti ini biasanya disebut ber-arsitektur Modified Harvard. Instruksi yang seperti ini dapat ditemukan pada keluarga MCS-51 termasuk Intel 80C51, P87CLXX dari Philips dan Atmel AT89LSXX. Tetapi instruksi itu keseluruhannya menjadi program yang lebih panjang seperti contoh program dengan 80C51 berikut ini.
MOV DPTR,#4000 ;DPTR = $4000
CLR A ;@A = 0
MOVC A,@A+DPTR ;A <– (DPTR+@A)
Urutan program di atas adalah :

  1. load/isi data pointer dengan #4000
  2. set accumulator A = 0 sebagai offset
  3. load/isi accumulator A dengan data di alamat 4000+offset
Bandingkan dengan instruksi 68HC11 yang cukup dengan satu instruksi LDAA $4000.


Perbedaan Von Noumann dan Harvard
Arsitektur Harvard dan Von Neuman keduanya memiliki kelebihan sekaligus juga kekurangan. Dalam memilih prosesor tentu saja tidak hanya dengan mempertimbangkan arsitekturnya. Motorola dengan varian singlechip-nya ada yang dilengkapi dengan konventer A/D dan D/A, PWM control, port I/O, EEPROM dan sebagainya. Tetapi tidak ketinggalan juga keluarga Intel 80C51 dan klonnya, memperkenalkan bus serial I2C yang sangat praktis untuk penambahan devais eksternal. Intel based MCS-51 adalah arsitektur yang paling banyak diadopsi misalnya oleh Philips dan Atmel, sehingga kompatibilitas diantaranya semakin besar.
Arsitektur Havard menggunakan memori terpisah untuk program dan data dengan alamat dan bus data yang berdiri sendiri. Karena dua perbedaan aliran data dan alamat, maka tidak diperlukan multiplexing alamat dan bus data.




Multiplexing


Definisi  Multiplexing 
Multiplexing adalah Teknik menggabungkan beberapa sinyal untuk dikirimkan secara bersamaan pada suatu kanal transmisi. Dimana perangkat yang melakukan Multiplexing disebut Multiplexer atau disebut juga dengan istilah Transceiver / Mux. Dan untuk di sisi penerima, gabungan sinyal - sinyal itu akan kembali di pisahkan sesuai dengan tujuan masing – masing. Proses ini disebut dengan Demultiplexing. Receiver atau perangkat yang melakukan Demultiplexing disebut dengan Demultiplexer atau disebut juga dengan istilah Demux.


Tujuan Muliplexing 

Bertujuan meningkatkan effisiensi penggunaan bandwidth / kapasitas saluran transmisi dengan cara berbagi akses bersama.



Jenis Teknik Multiplexing

Teknik Multiplexing yang umum digunakan adalah :
a. Time Division Multiplexing (TDM) :
- Synchronous TDM
- Asynchronous TDM
b. Frequency Division Multiplexing (FDM)
c. Code Division Multiplexing (CDM)
d. Wavelength Division Multiplexing (WDM)
e. Optical code Division Multiplexing (ODM)

Multiplexing adalah Teknik menggabungkan beberapa sinyal untuk dikirimkan secara bersamaan pada suatu kanal transmisi. Dimana perangkat yang melakukan Multiplexing disebut Multiplexer atau disebut juga dengan istilah Transceiver / Mux. Dan untuk di sisi penerima, gabungan sinyal - sinyal itu akan kembali di pisahkan sesuai dengan tujuan masing – masing. Proses ini disebut dengan Demultiplexing. Receiver atau perangkat yang melakukan Demultiplexing disebut dengan Demultiplexer atau disebut juga dengan istilah Demux.

Tujuan Muliplexing bertujuan meningkatkan effisiensi penggunaan bandwidth / kapasitas saluran transmisi dengan cara berbagi akses bersama.

Jenis Teknik Multiplexing

Teknik Multiplexing yang umum digunakan adalah :
a. Time Division Multiplexing (TDM) :
- Synchronous TDM
- Asynchronous TDM
b. Frequency Division Multiplexing (FDM)
c. Code Division Multiplexing (CDM)
d. Wavelength Division Multiplexing (WDM)
e. Optical code Division Multiplexing (ODM)
- See more at: http://kiteklik.blogspot.co.id/2011/07/multiplexing-jaringan-komputer.html#sthash.sGmRjBgy.dpuf
Multiplexing adalah Teknik menggabungkan beberapa sinyal untuk dikirimkan secara bersamaan pada suatu kanal transmisi. Dimana perangkat yang melakukan Multiplexing disebut Multiplexer atau disebut juga dengan istilah Transceiver / Mux. Dan untuk di sisi penerima, gabungan sinyal - sinyal itu akan kembali di pisahkan sesuai dengan tujuan masing – masing. Proses ini disebut dengan Demultiplexing. Receiver atau perangkat yang melakukan Demultiplexing disebut dengan Demultiplexer atau disebut juga dengan istilah Demux.

Tujuan Muliplexing bertujuan meningkatkan effisiensi penggunaan bandwidth / kapasitas saluran transmisi dengan cara berbagi akses bersama.

Jenis Teknik Multiplexing

Teknik Multiplexing yang umum digunakan adalah :
a. Time Division Multiplexing (TDM) :
- Synchronous TDM
- Asynchronous TDM
b. Frequency Division Multiplexing (FDM)
c. Code Division Multiplexing (CDM)
d. Wavelength Division Multiplexing (WDM)
e. Optical code Division Multiplexing (ODM)
- See more at: http://kiteklik.blogspot.co.id/2011/07/multiplexing-jaringan-komputer.html#sthash.sGmRjB
Multiplexing adalah Teknik menggabungkan beberapa sinyal untuk dikirimkan secara bersamaan pada suatu kanal transmisi. Dimana perangkat yang melakukan Multiplexing disebut Multiplexer atau disebut juga dengan istilah Transceiver / Mux. Dan untuk di sisi penerima, gabungan sinyal - sinyal itu akan kembali di pisahkan sesuai dengan tujuan masing – masing. Proses ini disebut dengan Demultiplexing. Receiver atau perangkat yang melakukan Demultiplexing disebut dengan Demultiplexer atau disebut juga dengan istilah Demux.

Tujuan Muliplexing bertujuan meningkatkan effisiensi penggunaan bandwidth / kapasitas saluran transmisi dengan cara berbagi akses bersama.

Jenis Teknik Multiplexing

Teknik Multiplexing yang umum digunakan adalah :
a. Time Division Multiplexing (TDM) :
- Synchronous TDM
- Asynchronous TDM
b. Frequency Division Multiplexing (FDM)
c. Code Division Multiplexing (CDM)
d. Wavelength Division Multiplexing (WDM)
e. Optical code Division Multiplexing (ODM)
- See more at: http://kiteklik.blogspot.co.id/2011/07/multiplexing-jaringan-komputer.html#sthash.sGmRjBgy.dpuf

Powered By Blogger

Pages - Menu

Bang Asep. Diberdayakan oleh Blogger.

Copyright © / Arkomnesia.com

Template by : Urang-kurai / powered by :blogger